Elements of an Al/ML Architecture for NASA

Brian Thomas HQ/OCIO 11/27/2018

Outline

- About Agency Data Analytics Team
 - Our scope of work, sampling of projects
- The Problem : Enabling the best return on ML/Al technologies
 - Definition of ML, scope
 - Ingredients of ML/Al Data + Processing power
 - Understanding key aspects of ML in practice
 - Problems with doing ML @NASA
- Solutions / Elements
 - Data & Processing
- Summary

About Me

What is an "Agency Data Scientist"?

"To Understand the Challenges and Capabilities of NASA in Data Science, Big Data and Data Analytics"

- Meet with folks around the agency
- Meet with vendors
- Targeted, pathfinding prototypes
- Inform Data Strategy for Agency

Agency Data Analytics Team

- "Agency" + "Analytics/Data Science" + "Technology & Innovation"
- Core Activities:

Text Analytics Machine Learning Statistical Modelling Data Visualization

Technology Evaluation Strategic Policy

Andrew Adrian
Senior Data Scientist

Anthony Buonomo

Data Scientist

Justin Gosses Senior Data Scientist

Kyle Klarup
PMF/Data Scientist

Jackie Cho
Data Science Intern

Naylynn Tanon Reyes
Data Science Intern

Website : https://analytics.nasa.gov

Some Machine Learning Projects

- Email Classification/Records Management
- Scientific Document Tagging
- Speech to Text
- Network Traffic Anomaly Detection
- ESD Ticket Analysis

What is Machine Learning?

"Field of study that gives computers the ability to learn without being explicitly programmed".

- Arthur Samuel, 1959

Why ML now?

- Data
- Processing Power
- Easier Tooling

Implementing ML

Derived Implications

- Trained from Data means:
 - Bespoke solution
 - Specialists Needed
 - Cleaning & Feature Extraction Matters
 - Training time vs Execution time tradeoffs
 - Try multiple models/solutions to maximize
- Big Data ML means:
 - It's not generally feasible to simply share code and someone compile it to get a solution
 - May need to build off someone else's solution to create your own

Problems/Roadblocks for ML

Acc

Discovery

Word of mouth/"I know a gal/guy"

Access

- Siloed Data
- Excessive Restrictions
- Difficult interface (ex. db connector + hidden/mysterious schema/interface)

Understanding

- Documentation is human readable; Humans must explain schema
- insufficient Processing power
 - Cost and/or access

difficult to Share results or build on prior work

Hard to replicate, lots of time spent engineering the solution

Solutions

Mixture of Technology, Policy and Culture Changes

Policy & Platforms: Improving Access to Data

- A Proper Data Governance
 - There are no "Data Owners"
 - Leverage/Crowdsource Expertise : Data Stewards
 - Metadata
 - Publish Data Dictionaries
 - Publish Clear Rules for Access
- Attribute-based Data Access
 - NAMS Integration?
 - Fewer Hoops (NAMS workflows)
 - Clearer traceability of who has access to what

Reuse of ML Solutions: Source Code Repositories

- Agency Solution(s)
 - Visible to all agency workers
 - Code pushed up from local repositories
 - Nice adds: issue tracking, Pull Requests, Plugin support, ...

Tackling Sharing Bespoke Code: Containers

Р

Using containers, everything required to make a piece of software run is packaged together in one place.


```
FROM ubuntu:14.04

RUN apt-get update

RUN apt-get install -y apache2
```

Example Configuration File

Tackling Code Reuse/Data Access : APIs

Reusing Functionality/Data: Networks of APIs!

- Cloud Computing Efforts
 - Center-based cloud environments (ex ARC, GSFC, MSFC, LRC)
 - Agency cloud moderate environments (better enable cross-center teams)
- Agency ITIF (w/ WSO)
 - template security plan
 - faster provisioning, clear costing
 - AWS (Google Cloud, Azure?)

Putting it together: Agency Architecture Components

- Data: Modern Data Architecture
 - Finding:
 - Data Governance Platform (DGP), Container and API Registries
 - Understanding:
 - DGP (Data Dictionaries, taxonomies and mappings, provenance and other metadata help quantify data quality)
 - Access:
 - API infrastructure, DGP, TBD system(s) for Attribute-based Access

Putting it together: Agency Architecture Components

- Processing: Ubiquitous, affordable, processing resources and shared code/containers/products
 - Cost effective cloud computing for the agency
 - Easy interface for use and understandable costing
 - Promote shared computing
 - Agency level source code repositories
 - Service to provide validated container images
 - API Registry, A&A*, OAuth2* (* w/ ICAM)

Who Helps?

OCIO

- Information Management Program
- Open Innovation Team
- Agency Data Analytics and Data Management teams
- Applications Program
- Computing
- Security

Center CIO

- Data Science and Data Management Teams
- Security

• Teams at missions (you?)

End